Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Phytother Res ; 37(5): 1850-1863, 2023 May.
Artigo em Inglês | MEDLINE | ID: covidwho-20245354

RESUMO

Evidence exists suggesting the anti-depressive activities of geniposide (GP), a major compound in Gardenia jasminoides Ellis. Accordingly, the present study attempts to explore the anti-depressive mechanism of GP in chronic unpredictable mild stress (CUMS)-induced depression-like behaviors of mice. CUMS-induced mice were given GP daily and subjected to behavioral tests to observe the effect of GP on the depression-like behaviors. It was noted that GP administration reduced depression-like behaviors in CUMS mice. Transcriptome sequencing was conducted in three control and three CUMS mice. Differentially expressed circRNAs, lncRNAs and mRNAs were then screened by bioinformatics analyses. Intersection analysis of the transcriptome sequencing results with the bioinformatics analysis results was followed to identify the candidate targets. We found that Gata2 alleviated depression-like behaviors via the metabolism- and synapse-related pathways. Gata2 was a target of miR-25-3p, which had binding sites to circ_0008405 and Oip5os1. circ_0008405 and Oip5os1 competitively bound to miR-25-3p to release the expression of Gata2. GP administration ameliorated depression-like behaviors in CUMS mice through regulation of the circ_0008405/miR-25-3p/Gata2 and Oip5os1/miR-25-3p/Gata2 crosstalk networks. Taken together, GP may exert a potential antidepressant-like effect on CUMS mice, which is ascribed to regulation of the circ_0008405/miR-25-3p/Gata2 and Oip5os1/miR-25-3p/Gata2 crosstalk networks.


Assuntos
Transtorno Depressivo , MicroRNAs , Camundongos , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Transtorno Depressivo/tratamento farmacológico , Depressão/tratamento farmacológico , Depressão/metabolismo , MicroRNAs/metabolismo , Fator de Transcrição GATA2
2.
Prim Care Companion CNS Disord ; 25(3)2023 May 23.
Artigo em Inglês | MEDLINE | ID: covidwho-20241579

RESUMO

Objective: To synthesize the neurobiological basis of brain-resetting effects of psilocybin and identify neuroimaging correlates of psilocybin response in depressed patients.Data Sources: MEDLINE(R), Embase, APA PsycINFO, Cochrane, and CINAHL were systematically searched on June 3, 2022, with no date restrictions using the following string: (psilocybin) AND (psychedelics) AND (MRI) OR (fMRI)) OR (PET)) OR (SPECT)) OR (imaging)) OR (neuroimaging)).Study Selection: After duplicates were removed from 946 studies, 391 studies remained, of which 8 qualified for full-text analysis, but only 5 fulfilled the eligibility criteria of randomized, double-blind, or open-label neuroimaging study with psilocybin treatment in depressed patients.Data Extraction: The Covidence platform was used for deduplication and bias assessment. The a priori data points included concomitant psychological intervention, modality of neuroimaging technique, changes in depression scores, brain functional changes, and association between functional and psilocybin response. Assessment bias was assessed with the standard risk of bias tool for randomized controlled trials and the tool for risk of bias in nonrandomized studies of interventions.Results: Four studies were open-label, and one was a combined open-label and randomized controlled trial using functional magnetic resonance imaging. Psilocybin-assisted psychotherapy was administered in 3 studies, 1 in refractory and 2 in nonrefractory patients. The remaining 2 studies were in refractory patients. The transient increase in psilocybin-induced global connectivity in major neural tracts and specific areas of brain activation was associated with antidepressant response.Conclusions: Transient functional brain changes with psilocybin therapy resemble the "brain reset" phenomenon and may serve as the putative predictors of psilocybin antidepressant response.


Assuntos
Depressão , Psilocibina , Humanos , Antidepressivos/farmacologia , Encéfalo/diagnóstico por imagem , Depressão/tratamento farmacológico , Psilocibina/farmacologia , Psilocibina/uso terapêutico , Psicoterapia/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: covidwho-2216285

RESUMO

Mapping non-canonical cellular pathways affected by approved medications can accelerate drug repurposing efforts, which are crucial in situations with a global impact such as the COVID-19 pandemic. Fluoxetine and fluvoxamine are well-established and widely-used antidepressive agents that act as serotonin reuptake inhibitors (SSRI-s). Interestingly, these drugs have been reported earlier to act as lysosomotropic agents, inhibitors of acid sphingomyelinase in the lysosomes, and as ligands of sigma-1 receptors, mechanisms that might be used to fight severe outcomes of COVID-19. In certain cases, these drugs were administered for selected COVID-19 patients because of their antidepressive effects, while in other cases, clinical studies were performed to assess the effect of these drugs on treating COVID-19 patients. Clinical studies produced promising data that encourage the further investigation of fluoxetine and fluvoxamine regarding their use in COVID-19. In this review, we summarize experimental data and the results of the performed clinical studies. We also provide an overview of previous knowledge on the tissue distribution of these drugs and by integrating this information with the published experimental results, we highlight the real opportunity of using these drugs in our fight against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Fluvoxamina , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Fluvoxamina/farmacologia , Fluvoxamina/uso terapêutico , Humanos , Pandemias , SARS-CoV-2 , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico
4.
Oxid Med Cell Longev ; 2022: 1061274, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-2053393

RESUMO

Background: Major depressive disorder (MDD) and treatment-resistant depression (TRD) represent a global source of societal and health burden. To advise proper management of inflammation-related depression among TRD patients, it is important to identify therapeutic clinical treatments. A key factor is related to proinflammatory cytokines such as interleukin- (IL-) 1ß, IL-6, and tumor necrosis factor- (TNF-) α which have been implicated in the pathogenesis of depressive symptoms in MDD patients. Ketamine may provide an anti-inflammatory therapeutic strategy by targeting proinflammatory pathways associated with depressive disorders, which may be exacerbated in the ageing population with TRD. Objective: Despite a burgeoning body of literature demonstrating that inflammation is linked to TRD, there is still a lack of comprehensive research on the relationship between proinflammatory biomarkers and ketamine's antidepressant effect on TRD patients. Method: The Cochrane Library and PubMed/MEDLINE databases were systematically searched from inception up to February 1, 2022, adopting broad inclusion criteria to assess clinical topics related to the impact of ketamine on inflammatory cytokines in TRD patients. The present work is in compliance with the World Health Organization Rapid Review Guide. Results: Five out of the seven studies examined in this review show that ketamine infusion may reduce depressive symptoms with a quick start of effect on TRD patients. Based on the Montgomery-Åsberg Depression Rating Scale (MADRS) and Hamilton Depression Rating Scale (HAM-D) scores, the overall response rate for ketamine was 56%; that is, 56% of those treated with ketamine had MADRS/HAM-D scores decreased by at least 50%. Conclusions: While the anti-inflammatory effects of ketamine modulate specific proinflammatory cytokines, its rapid antidepressant effect on TRD patients remains inconsistent. However, our study findings can provide a reliable basis for future research on how to improve systemic inflammatory immune disorders and mental health. We suggest that ketamine infusion may be part of a comprehensive treatment approach in TRD patients with elevated levels of depression-specific inflammatory biomarkers.


Assuntos
Transtorno Depressivo Maior , Ketamina , Adulto , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Biomarcadores , Citocinas , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico , Interleucina-6 , Ketamina/farmacologia , Ketamina/uso terapêutico , Resultado do Tratamento , Fator de Necrose Tumoral alfa
5.
Pharmacol Biochem Behav ; 220: 173455, 2022 10.
Artigo em Inglês | MEDLINE | ID: covidwho-2008018

RESUMO

Major depressive disorder (MDD) has increasingly reached the world population with an expressive increase in recent years due to the COVID-19 pandemic. Here we used adult zebrafish (Danio rerio) as a model to verify the effects of reserpine on behavior and neurotransmitter levels. We observed an increase in the immobile time and time spent in the bottom zone of the tank in reserpine-exposed animals. The results demonstrated a decrease in distance traveled and velocity. Reserpine exposure did not induce changes in memory and social interaction compared to the control group. We also evaluated the influence of exposure to fluoxetine, a well-known antidepressant, on the behavior of reserpine-exposed animals. We observed a reversal of behavioral alterations caused by reserpine. To verify whether behavioral alterations in the putative depression model induced by reserpine could be prevented, the animals were subjected to physical exercise for 6 weeks. The results showed a protective effect of the physical exercise against the behavioral changes caused by reserpine in zebrafish. In addition, we observed a reduction in dopamine and serotonin levels and an increase in the 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the brain. Physical exercise was able to prevent the changes in dopamine and serotonin levels, reinforcing that the preventive effect promoted by physical exercise is related to the modulation of neurotransmitter levels. Our findings showed that reserpine was effective in the induction of a putative depression model in zebrafish and that physical exercise may be an alternative to prevent the effects induced by reserpine.


Assuntos
COVID-19 , Transtorno Depressivo Maior , Ácido 3,4-Di-Hidroxifenilacético , Animais , Antidepressivos/farmacologia , Comportamento Animal , Depressão/induzido quimicamente , Depressão/prevenção & controle , Transtorno Depressivo Maior/tratamento farmacológico , Dopamina/farmacologia , Exercício Físico , Fluoxetina/farmacologia , Humanos , Pandemias , Reserpina/farmacologia , Serotonina , Peixe-Zebra
6.
Transl Psychiatry ; 12(1): 341, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: covidwho-2000872

RESUMO

Antidepressants have previously been associated with better outcomes in patients hospitalized with COVID-19, but their effect on clinical deterioration among ambulatory patients has not been fully explored. The objective of this study was to assess whether antidepressant exposure was associated with reduced emergency department (ED) or hospital visits among ambulatory patients with SARS-CoV-2 infection. This retrospective cohort study included adult patients (N = 25 034) with a positive SARS-CoV-2 test performed in a non-hospital setting. Logistic regression analyses tested associations between home use of antidepressant medications and a composite outcome of ED visitation or hospital admission within 30 days. Secondary exposures included individual antidepressants and antidepressants with functional inhibition of acid sphingomyelinase (FIASMA) activity. Patients with antidepressant exposure were less likely to experience the primary composite outcome compared to patients without antidepressant exposure (adjusted odds ratio [aOR] 0.89, 95% CI 0.79-0.99, p = 0.04). This association was only observed with daily doses of at least 20 mg fluoxetine-equivalent (aOR 0.87, 95% CI 0.77-0.99, p = 0.04), but not with daily doses lower than 20 mg fluoxetine-equivalent (aOR 0.94, 95% CI 0.80-1.11, p = 0.48). In exploratory secondary analyses, the outcome incidence was also reduced with exposure to selective serotonin reuptake inhibitors (aOR 0.87, 95% CI 0.75-0.99, p = 0.04), bupropion (aOR 0.70, 95% CI 0.55-0.90, p = 0.005), and FIASMA antidepressant drugs (aOR 0.87, 95% CI 0.77-0.99, p = 0.03). Antidepressant exposure was associated with a reduced incidence of emergency department visitation or hospital admission among SARS-CoV-2 positive patients, in a dose-dependent manner. These data support the FIASMA model of antidepressants' effects against COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Antidepressivos/farmacologia , Serviço Hospitalar de Emergência , Fluoxetina , Humanos , Pacientes Ambulatoriais , Estudos Retrospectivos
7.
Sci Rep ; 12(1): 12920, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: covidwho-1960505

RESUMO

During the current coronavirus disease 2019 (COVID-19) pandemic, symptoms of depression are commonly documented among both symptomatic and asymptomatic quarantined COVID-19 patients. Despite that many of the FDA-approved drugs have been showed anti-SARS-CoV-2 activity in vitro and remarkable efficacy against COVID-19 in clinical trials, no pharmaceutical products have yet been declared to be fully effective for treating COVID-19. Antidepressants comprise five major drug classes for the treatment of depression, neuralgia, migraine prophylaxis, and eating disorders which are frequently reported symptoms in COVID-19 patients. Herein, the efficacy of eight frequently prescribed FDA-approved antidepressants on the inhibition of both SARS-CoV-2 and MERS-CoV was assessed. Additionally, the in vitro anti-SARS-CoV-2 and anti-MERS-CoV activities were evaluated. Furthermore, molecular docking studies have been performed for these drugs against the spike (S) and main protease (Mpro) pockets of both SARS-CoV-2 and MERS-CoV. Results showed that Amitriptyline, Imipramine, Paroxetine, and Sertraline had potential anti-viral activities. Our findings suggested that the aforementioned drugs deserve more in vitro and in vivo studies targeting COVID-19 especially for those patients suffering from depression.


Assuntos
Tratamento Farmacológico da COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Reposicionamento de Medicamentos/métodos , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2
8.
Molecules ; 27(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: covidwho-1892924

RESUMO

Excessive corticosterone (CORT), resulting from a dysregulated hypothalamic-pituitary-adrenal (HPA) axis, is associated with cognitive impairment and behavioral changes, including depression. In Korean oriental medicine, Pedicularis resupinata is used for the treatment of inflammatory diseases such as rheumatoid arthritis. However, the antidepressant properties of P. resupinata have not been well characterized. Here, the antidepressant-like effects of P. resupinata extract (PRE) were evaluated in terms of CORT-induced depression using in vivo models. HPLC confirmed that acteoside, a phenylethanoid glycoside, was the main compound from PRE. Male ICR mice (8 weeks old) were injected with CORT (40 mg/kg, i.p.) and orally administered PRE daily (30, 100, and 300 mg/kg) for 21 consecutive days. Depressive-like behaviors were evaluated using the open-field test, sucrose preference test, passive avoidance test, tail suspension test, and forced swim test. Treatment with a high dose of PRE significantly alleviated CORT-induced, depressive-like behaviors in mice. Additionally, repeated CORT injection markedly reduced brain-derived neurotrophic factor levels, whereas total glucocorticoid receptor (GR) and GR phosphorylation at serine 211 were significantly increased in the mice hippocampus but improved by PRE treatment. Thus, our findings suggest that PRE has potential antidepressant-like effects in CORT-induced, depressive-like behavior in mice.


Assuntos
Corticosterona , Pedicularis , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Comportamento Animal , Corticosterona/efeitos adversos , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/psicologia , Modelos Animais de Doenças , Hipocampo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Sistema Hipófise-Suprarrenal , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Receptores de Glucocorticoides
9.
Molecules ; 27(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: covidwho-1892922

RESUMO

BACKGROUND: Heterocyclic compounds and their fused analogs, which contain pharmacophore fragments such as pyridine, thiophene and pyrimidine rings, are of great interest due to their broad spectrum of biological activity. Chemical compounds containing two or more pharmacophore groups due to additional interactions with active receptor centers usually enhance biological activity and can even lead to a new type of activity. The search for new effective neurotropic drugs in the series of derivatives of heterocycles containing pharmacophore groups in organic, bioorganic and medical chemistry is a serious problem. METHODS: Modern methodology of drugs involves synthesis, physicochemical study, molecular modeling and selection of active compounds through virtual screening and experimental evaluation of the biological activity of new chimeric compounds with pharmacophore fragments. For the synthesis of new compounds, classical organic methods were used and developed. For the evaluation of neurotropic activity of new synthesized compounds, some biological methods were used according to indicators characterizing anticonvulsant, sedative and antianxiety activity as well as side effects. For docking analysis, various soft ware packages and methods were used. RESULTS: As a result of multistep reactions, 11 new, tri- and tetracyclic heterocyclic systems were obtained. The studied compounds exhibit protection against pentylenetetrazole (PTZ) seizures as well as some psychotropic effects. The biological assays evidenced that nine of the eleven studied compounds showed a high anticonvulsant activity by antagonism with pentylenetetrazole. The toxicity of the compounds is low, and they do not induce muscle relaxation in the studied doses. According to the study of psychotropic activity, it was found that the selected compounds have an activating behavior and anxiolytic effects on the "open field" and "elevated plus maze" (EPM) models. The data obtained indicate the anxiolytic (antianxiety) activity of the derivatives of tricyclic thieno[2,3-b]pyridines and tetracyclic pyridothieno[3,2-d]pyrimidin-8-ones, especially pronounced in compounds 3b-f and 4e. The studied compounds increase the latent time of first immobilization on the "forced swimming" (FS) model and exhibit antidepressant effects; compounds 3e and 3f especially exhibit these effects, similarly to diazepam. Docking studies revealed that compounds 3c and 4b bound tightly in the active site of γ-aminobutyric acid type A (GABAA) receptors with a value of the scoring function that estimates free energy of binding (∆G) at -10.0 ± 5 kcal/mol. Compound 4e showed the best affinity ((∆G) at -11.0 ± 0.54 kcal/mol) and seems to be an inhibitor of serotonin (SERT) transporter. Compounds 3c-f and 4e practically bound with the groove of T4L of 5HT_1A and blocked it completely, while the best affinity observed was in compound 3f ((∆G) at -9.3 ± 0.46 kcal/mol). CONCLUSIONS: The selected compounds have an anticonvulsant, activating behavior and anxiolytic effects and at the same time exhibit antidepressant effects.


Assuntos
Ansiolíticos , Pentilenotetrazol , Ansiolíticos/farmacologia , Anticonvulsivantes/química , Antidepressivos/farmacologia , Simulação de Acoplamento Molecular , Pentilenotetrazol/efeitos adversos , Piridinas/química , Pirimidinas/química , Receptores de GABA-A , Relação Estrutura-Atividade
10.
J Clin Psychopharmacol ; 42(3): 284-292, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1788555

RESUMO

PURPOSE/BACKGROUND: Studies for repurposed drugs in severe acute respiratory syndrome coronavirus type 2-infected and coronavirus disease 2019 (COVID-19) patients are ongoing. According to preclinical research, antidepressants (ADs) might be useful in the treatment of COVID-19. METHODS/PROCEDURES: We conducted a scoping review including clinical studies on AD effects on SARS-CoV-2 infection and COVID-19. FINDING/RESULTS: As of January 2, 2022, we found 14 clinical studies, which could be included into this review. Among them, there were 2 randomized, placebo-controlled studies and 2 prospective parallel-group studies about the efficacy/effectiveness and tolerability of fluvoxamine. The remaining studies were mainly retrospective studies considering COVID-19 hospital populations predominantly exposed to fluoxetine (N = 3), other selective serotonin reuptake inhibitors (SSRI), selective norepinephrine reuptake inhibitors (SNRI), and trazodone. The vast majority were hospital studies and assessed COVID-19 severity (morbidity) and mortality as primary endpoints. The only outpatient study (fluvoxamine) investigated the COVID-19-related hospitalization rate, and 1 psychiatric hospital study (SSRI, SNRI, trazodone) focused on the SARS-CoV-2 infection rate. IMPLICATIONS/CONCLUSIONS: At present, the best evidence of an "anti-COVID-19" potential of ADs exists for fluvoxamine and, to a lesser extent, for fluoxetine. Preliminary evidence had found that patients exposed to SSRI or SNRI substance classes might have a reduced mortality risk and that trazodone might reduce SARS-CoV-2 infection rates. Three studies found no relevant influence of ADs on COVID-19 morbidity and mortality, and 1 study described increased mortality. The latter study, however, did not differentiate between psychotropic medication and ADs. Tricyclics and monoamine oxidase inhibitors are still absolute "dark zones" in COVID-19 research. Further controlled studies testing the effectiveness/efficacy and tolerability/safety (as well as the treatment timing and duration) of different AD substance classes in COVID-19 and post/long-COVID patients of various populations are warranted.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Inibidores da Recaptação de Serotonina e Norepinefrina , Trazodona , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , COVID-19/complicações , Fluoxetina/farmacologia , Fluvoxamina/farmacologia , Fluvoxamina/uso terapêutico , Humanos , Estudos Prospectivos , Estudos Retrospectivos , SARS-CoV-2 , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Síndrome de COVID-19 Pós-Aguda
11.
Int J Mol Sci ; 23(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: covidwho-1715398

RESUMO

The phenomenon of individual variability in susceptibility/resilience to stress and depression, in which the hippocampus plays a pivotal role, is attracting increasing attention. We investigated the potential role of hippocampal cyclooxygenase-2 (COX-2), which regulates plasticity, neuroimmune function, and stress responses that are all linked to this risk dichotomy. We used a four-week-long chronic mild stress (CMS) paradigm, in which mice could be stratified according to their susceptibility/resilience to anhedonia, a key feature of depression, to investigate hippocampal expression of COX-2, a marker of microglial activation Iba-1, and the proliferation marker Ki67. Rat exposure, social defeat, restraints, and tail suspension were used as stressors. We compared the effects of treatment with either the selective COX-2 inhibitor celecoxib (30 mg/kg/day) or citalopram (15 mg/kg/day). For the celecoxib and vehicle-treated mice, the Porsolt test was used. Anhedonic (susceptible) but not non-anhedonic (resilient) animals exhibited elevated COX-2 mRNA levels, increased numbers of COX-2 and Iba-1-positive cells in the dentate gyrus and the CA1 area, and decreased numbers of Ki67-positive cells in the subgranular zone of the hippocampus. Drug treatment decreased the percentage of anhedonic mice, normalized swimming activity, reduced behavioral despair, and improved conditioned fear memory. Hippocampal over-expression of COX-2 is associated with susceptibility to stress-induced anhedonia, and its pharmacological inhibition with celecoxib has antidepressant effects that are similar in size to those of citalopram.


Assuntos
Anedonia/fisiologia , Ciclo-Oxigenase 2/metabolismo , Hipocampo/metabolismo , Estresse Psicológico/metabolismo , Anedonia/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Celecoxib/farmacologia , Citalopram/farmacologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Elevação dos Membros Posteriores/fisiologia , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Estresse Psicológico/tratamento farmacológico , Natação/fisiologia
12.
Mol Psychiatry ; 27(4): 1898-1907, 2022 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1612180

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) accelerates the discovery of prophylactic and therapeutic drugs for persons infected with the virus. Drug repurposing for the COVID-19 pandemic has received particular attention. Increasing clinical data suggest that antidepressant use in early-stage subjects with COVID-19 might be associated with a reduced risk of intubation or death. Among the antidepressants, fluvoxamine is the most attractive drug for mild to moderate subjects with COVID-19. In this article, we review the mechanisms of action (i.e., serotonin transporter, sigma-1 receptor, and acid sphingomyelinase) of fluvoxamine for COVID-19. Furthermore, we discuss a possible link between maternal COVID-19 infection and a risk for neuropsychiatric disorders (i.e., autism spectrum disorder and schizophrenia) in offspring.


Assuntos
Transtorno do Espectro Autista , Tratamento Farmacológico da COVID-19 , Antidepressivos/farmacologia , Transtorno do Espectro Autista/tratamento farmacológico , Fluvoxamina/farmacologia , Fluvoxamina/uso terapêutico , Humanos , Pandemias , SARS-CoV-2
13.
Life Sci ; 291: 120267, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1587054

RESUMO

Tauopathy is a term that has been used to represent a pathological condition in which hyperphosphorylated tau protein aggregates in neurons and glia which results in neurodegeneration, synapse loss and dysfunction and cognitive impairments. Recently, drug repositioning strategy (DRS) becomes a promising field and an alternative approach to advancing new treatments from actually developed and FDA approved drugs for an indication other than the indication it was originally intended for. This paradigm provides an advantage because the safety of the candidate compound has already been established, which abolishes the need for further preclinical safety testing and thus substantially reduces the time and cost involved in progressing of clinical trials. In the present review, we focused on correlation between tauopathy and common diseases as type 2 diabetes mellitus and the global virus COVID-19 and how tau pathology can aggravate development of these diseases in addition to how these diseases can be a risk factor for development of tauopathy. Moreover, correlation between COVID-19 and type 2 diabetes mellitus was also discussed. Therefore, repositioning of a drug in the daily clinical practice of patients to manage or prevent two or more diseases at the same time with lower side effects and drug-drug interactions is a promising idea. This review concluded the results of pre-clinical and clinical studies applied on antidiabetics, COVID-19 medications, antihypertensives, antidepressants and cholesterol lowering drugs for possible drug repositioning for management of tauopathy.


Assuntos
Antivirais/farmacologia , COVID-19/fisiopatologia , Reposicionamento de Medicamentos , Hipoglicemiantes/farmacologia , Tauopatias/tratamento farmacológico , Antidepressivos/farmacologia , Anti-Hipertensivos/farmacologia , Apoptose/efeitos dos fármacos , Diabetes Mellitus Tipo 2/fisiopatologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Terapia de Alvo Molecular/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tauopatias/fisiopatologia , Tratamento Farmacológico da COVID-19
14.
JAMA Netw Open ; 4(11): e2133090, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1516696

RESUMO

Importance: Antidepressant use may be associated with reduced levels of several proinflammatory cytokines suggested to be involved with the development of severe COVID-19. An association between the use of selective serotonin reuptake inhibitors (SSRIs)-specifically fluoxetine hydrochloride and fluvoxamine maleate-with decreased mortality among patients with COVID-19 has been reported in recent studies; however, these studies had limited power due to their small size. Objective: To investigate the association of SSRIs with outcomes in patients with COVID-19 by analyzing electronic health records (EHRs). Design, Setting, and Participants: This retrospective cohort study used propensity score matching by demographic characteristics, comorbidities, and medication indication to compare SSRI-treated patients with matched control patients not treated with SSRIs within a large EHR database representing a diverse population of 83 584 patients diagnosed with COVID-19 from January to September 2020 and with a duration of follow-up of as long as 8 months in 87 health care centers across the US. Exposures: Selective serotonin reuptake inhibitors and specifically (1) fluoxetine, (2) fluoxetine or fluvoxamine, and (3) other SSRIs (ie, not fluoxetine or fluvoxamine). Main Outcomes and Measures: Death. Results: A total of 3401 adult patients with COVID-19 prescribed SSRIs (2033 women [59.8%]; mean [SD] age, 63.8 [18.1] years) were identified, with 470 receiving fluoxetine only (280 women [59.6%]; mean [SD] age, 58.5 [18.1] years), 481 receiving fluoxetine or fluvoxamine (285 women [59.3%]; mean [SD] age, 58.7 [18.0] years), and 2898 receiving other SSRIs (1733 women [59.8%]; mean [SD] age, 64.7 [18.0] years) within a defined time frame. When compared with matched untreated control patients, relative risk (RR) of mortality was reduced among patients prescribed any SSRI (497 of 3401 [14.6%] vs 1130 of 6802 [16.6%]; RR, 0.92 [95% CI, 0.85-0.99]; adjusted P = .03); fluoxetine (46 of 470 [9.8%] vs 937 of 7050 [13.3%]; RR, 0.72 [95% CI, 0.54-0.97]; adjusted P = .03); and fluoxetine or fluvoxamine (48 of 481 [10.0%] vs 956 of 7215 [13.3%]; RR, 0.74 [95% CI, 0.55-0.99]; adjusted P = .04). The association between receiving any SSRI that is not fluoxetine or fluvoxamine and risk of death was not statistically significant (447 of 2898 [15.4%] vs 1474 of 8694 [17.0%]; RR, 0.92 [95% CI, 0.84-1.00]; adjusted P = .06). Conclusions and Relevance: These results support evidence that SSRIs may be associated with reduced severity of COVID-19 reflected in the reduced RR of mortality. Further research and randomized clinical trials are needed to elucidate the effect of SSRIs generally, or more specifically of fluoxetine and fluvoxamine, on the severity of COVID-19 outcomes.


Assuntos
Antidepressivos , COVID-19/mortalidade , Fluoxetina , Fluvoxamina , Inibidores Seletivos de Recaptação de Serotonina , Índice de Gravidade de Doença , Adulto , Idoso , Antidepressivos/farmacologia , COVID-19/metabolismo , Citalopram/farmacologia , Citocinas/metabolismo , Feminino , Fluoxetina/farmacologia , Fluvoxamina/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Medicamentos sob Prescrição , Estudos Retrospectivos , Risco , SARS-CoV-2 , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sertralina , Estados Unidos
15.
J Cell Biochem ; 123(2): 155-160, 2022 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1473858

RESUMO

Drug repurposing is an attractive option for identifying new treatment strategies, in particular in extraordinary situations of urgent need such as the current coronavirus disease 2019 (Covid-19) pandemic. Recently, the World Health Organization announced testing of three drugs as potential Covid-19 therapeutics that are known for their dampening effect on the immune system. Thus, the underlying concept of selecting these drugs is to temper the potentially life-threatening overshooting of the immune system reacting to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. This viewpoint discusses the possibility that the impact of these and other drugs on autophagy contributes to their therapeutic effect by hampering the SARS-CoV-2 life cycle.


Assuntos
Antivirais/farmacologia , Artesunato/farmacologia , Autofagia/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , Mesilato de Imatinib/farmacologia , Infliximab/farmacologia , Pandemias , SARS-CoV-2/efeitos dos fármacos , Antidepressivos/farmacologia , Antivirais/uso terapêutico , Artesunato/uso terapêutico , Cloroquina/farmacologia , Desenvolvimento de Medicamentos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/virologia , Endossomos/efeitos dos fármacos , Endossomos/virologia , Humanos , Hidroxicloroquina/farmacologia , Mesilato de Imatinib/uso terapêutico , Infliximab/uso terapêutico , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/fisiologia , Membranas Intracelulares/virologia , Ivermectina/farmacologia , Macrolídeos/farmacologia , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Niclosamida/farmacologia , Niclosamida/uso terapêutico , RNA Viral/metabolismo , SARS-CoV-2/fisiologia , Replicação Viral
16.
Biomed Pharmacother ; 144: 112291, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1466070

RESUMO

BACKGROUND: Oxytocin (OXT), a neuropeptide involved in mammal reproductive and prosocial behaviors, has been reported to interact with various stressor-provoked neurobiological changes, including neuroendocrine, neurotransmitter, and inflammatory processes. In view of disturbances in psychosocial relationships due to social isolation and physical distancing measures amid the COVID-19 pandemic, being one of the triggering factors for the recent rise in depression and anxiety, OXT is a potential candidate for a new antidepressant. METHODS: In this present study, we have aimed to investigate the effects of oral administration of Rosmarinus officinalis extract (RE), extracted from distillation residue of rosemary essential oil, on central OXT level in the context of other stress biomarkers and neurotransmitter levels in mice models. Tail suspension test (TST) and elevated plus maze test (EPMT) following LPS injection were employed to assess depressive- and anxiety-like behavior in mice, respectively. FINDINGS: Pretreatment with RE for seven days significantly improved behavior in TST and EPMT. Whole-genome microarray analysis reveals that RE significantly reversed TST stress-induced alterations in gene expressions related to oxytocinergic and neurotransmitter pathways and inflammatory processes. In both models, RE significantly increased central Oxt and Oxtr expressions, as well as OXT protein levels. RE also significantly attenuated stress-induced changes in serum corticosterone, brain and serum BDNF levels, and brain neurotransmitters levels in both models. INTERPRETATION: Altogether, our study is the first to report antidepressant- and anxiolytic-like activities of RE through modulating oxytocinergic system in mice brain and thus highlights the prospects of RE in the treatment of depressive disorders of psychosocial nature.


Assuntos
Ansiolíticos/uso terapêutico , Antidepressivos/uso terapêutico , Ocitocina/metabolismo , Extratos Vegetais/uso terapêutico , Receptores de Ocitocina/metabolismo , Rosmarinus , Animais , Ansiolíticos/isolamento & purificação , Ansiolíticos/farmacologia , Antidepressivos/isolamento & purificação , Antidepressivos/farmacologia , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Relação Dose-Resposta a Droga , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Ocitocina/agonistas , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Receptores de Ocitocina/agonistas
17.
J Am Nutr Assoc ; 41(8): 840-854, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1434252

RESUMO

In recent years, the use of natural compounds as adjuvant treatments and alternatives to traditional pharmacological therapies has become increasingly popular. These compounds have a wide range of biological effects, such as: antioxidant, anti-aging, hypocholesterolizing, hypoglycemic, antitumoral, antidepressant, anxiolytic activity, etc. Almost all of these compounds are easily available and are contained in different foods. At the end of 2019 the Coronavirus SARS-CoV-2 appeared in China and quickly spread throughout the world, causing a pandemic. The most common symptoms of this infection are dry cough, fever, dyspnea, and in severe cases bilateral interstitial pneumonia, with consequences that can lead to death. The nations, in trying to prevent the spread of infection, have imposed social distancing and lockdown measures on their citizens. This had a strong psychological-social impact, leading to phobic, anxious and depressive states. Pharmacological therapy could be accompanied by treatment with several natural compounds, such as vitamins, baicalein, zinc and essential oils. These compounds possess marked immunostimulant activity, strengthening the immune response and mitigating interactions between the virus and the host cell. They also have an antidepressant effect, acting on certain neurotransmitters.


Assuntos
Tratamento Farmacológico da COVID-19 , Humanos , SARS-CoV-2 , Adjuvantes Imunológicos/farmacologia , Controle de Doenças Transmissíveis , Antidepressivos/farmacologia
18.
Nurs Stand ; 36(9): 77-81, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1369911

RESUMO

Ketamine is a synthetic drug with unique properties which started to be used therapeutically in humans in the 1970s and is now widely used in all fields of nursing. Ketamine acts on the central nervous system, primarily through inhibiting N-methyl-D-aspartate receptors. However, the precise understanding of its mechanisms of action remains elusive in many respects. Ketamine is frequently used as an anaesthetic in medical and surgical procedures and as an analgesic in children and adults. It is increasingly used in mental health settings to treat depression. It has potential to be used more often in areas such as palliative care and mental health care. This article reviews the physiological and pharmacological properties of ketamine, explores its main therapeutic uses, and considers the associated implications for nursing practice.


Assuntos
Analgésicos , Anestésicos , Ketamina , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Anestésicos/farmacologia , Anestésicos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Humanos , Ketamina/farmacologia , Ketamina/uso terapêutico
20.
Pharmacopsychiatry ; 54(5): 215-223, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: covidwho-1217715

RESUMO

INTRODUCTION: Depression is responsible for 800 000 deaths worldwide, a number that will rise significantly due to the COVID-19 pandemic. Affordable novel drugs with less severe side effects are urgently required. We investigated the effect of withanone (WN) from Withania somnifera on the serotonin system of wild-type and knockout Caenorhabditis elegans strains using in silico, in vitro, and in vivo methods. METHODS: WN or fluoxetine (as positive control drug) was administered to wild-type (N2) and knockout C. elegans strains (AQ866, DA1814, DA2100, DA2109, and MT9772) to determine their effect on oxidative stress (Trolox, H2DCFDA, and juglone assays) on osmotic stress and heat stress and lifespan. Quantitative real-time RT-PCR was applied to investigate the effect of WN or fluoxetine on the expression of serotonin receptors (ser-1, ser-4, ser-7) and serotonin transporter (mod-5). The binding affinity of WN to serotonin receptors and transporter was analyzed in silico using AutoDock 4.2.6. RESULTS: WN scavenged ROS in wild-type and knockout C. elegans and prolonged their lifespan. WN upregulated the expression of serotonin receptor and transporter genes. In silico analyses revealed high binding affinities of WN to Ser-1, Ser-4, Ser-7, and Mod-5. LIMITATIONS: Further studies are needed to prove whether the results from C. elegans are transferrable to mammals and human beings. CONCLUSION: WN ameliorated depressive-associated stress symptoms by activating the serotonin system. WN may serve as potential candidate in developing new drugs to treat depression.


Assuntos
Depressão , Receptores de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Vitanolídeos/farmacologia , Animais , Animais Geneticamente Modificados , Antidepressivos/farmacologia , COVID-19/psicologia , Caenorhabditis elegans , Depressão/tratamento farmacológico , Depressão/metabolismo , Fluoxetina/farmacologia , Humanos , Longevidade/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA